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Prognostics Center of Excellence 

How can the information from multiple uncertainty 
sources be properly represented and processed?

What is the best prediction algorithm for a 
particular application?

How should prognostic requirements be expressed and 
how should prognostic performance be measured

How should prognostic information from different, 
interacting subsystems be combined and processed?

How should prognostic information be incorporated in  decision 
making to ensure safety and satisfy mission objectives?

How can the proper operation of prognostic algorithms be 

verified and validated, especially on new systems?

Mission: Advance state-of-the-art in prognostics technology development 

• Investigate algorithms for estimation of remaining life  

– Investigate physics-of-failure  

– Model damage initiation and propagation  

– Investigate uncertainty management 

• Validate research findings in hardware testbeds 

– Hardware-in-the-loop experiments 

– Accelerated aging testbeds 

– HIL demonstration platforms 

• Systems Engineering Aspects 

– SE process 

– Requirements 

– V&V 

– Certification  

• Disseminate research findings 

– Public data repository  

for run-to-failure data 

– Actively publish research results 

• Engage research community 

• Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov] 

NASA Ames Research Center, CA 
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Outline 

1. Prognostics and its use for battery 

applications 

2. Battery modeling and validation for 

prognostics 

3. Aging and fault injection experiments 
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Prognostics 

• An element of systems health management 

– Detection, Diagnosis, Prognosis, Mitigation 

• Definition 

– “Predicting time at which a component will no longer perform its intended function 

within desired specification” 

• Time at which this happens is called End-of-Life (EOL) 

• Lack of functional performance is often defined as component failure  

– Due to a fault condition 

– Due to wear and degradation 

• Predicted time becomes Remaining Useful Life (RUL) 

• Predictions are based on  

– Analysis of failure modes 

– Detection of early signs of wear and aging, and fault conditions  

– Correlation of signs of aging with a mathematical description of how the damage is 

expected to increase  

• The damage propagation model 

– Condition monitoring data 

– Expected future loading 

12/19/2012 4 

Source: http://prognostics.nasa.gov 
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Paradigm Change in Health Management 

Nominal 
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Fault detected 

Diagnostics 
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maintenance 

Moving from Scheduled or Reactive Maintenance to Condition-Based Maintenance (CBM) 
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Fault mitigation 
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Aren’t we talking Battery Reliability? 
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An aggregate statistical measure like Failure Rate (# of failures/population size) must NOT 

be confused with the true Remaining Useful Life (RUL) distribution of a specific unit 

Prognostics focuses on this 

phase 
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Concept Similarities and Differences 

• MTBF 

– A common term used in specifying and marketing products is 

MTBF, which is a vastly misunderstood (and often misused) 

term. MTBF historically stands for "Mean Time Between 

Failures," and as such, applies only when the underlying 

distribution has a constant failure rate (e.g. an exponential 

distribution). 
Dennis J. Wilkins, Retired Hewlett-Packard Senior Reliability Specialist, currently a ReliaSoft Reliability Field Consultant, 

“The Bathtub Curve and Product Failure Behavior”, Reliability Hotwire, Issue 22, December 2002 

• RUL 

– We define RUL as amount of time left before system health falls 

below a defined failure threshold, based on the current state 

assessment and expected future operational conditions of the 

system. 
A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S Saha, and M. Schwabacher, “Metrics for Evaluating Performance 

of Prognostic Techniques”, Intl. Conf. on Prognostics and Health Management, Denver, CO, October 2008. 
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Source: http://prognostics.nasa.gov 
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Benefits of Prognostics 

• Paradigm Switch  
– From reactive troubleshooting to proactive failure avoidance 

• Predict when failure will occur with high confidence 

• Provide optimized actionable decision support 

– Information on 
• Time-to-criticality 

• Degree of wear/degradation 

• Benefits 
– Increase mission/launch availability 

– Provide informed decision when to continue/cancel operation 

– Avoid unscheduled maintenance 

– Facilitate risk reduction 

– Support go/no-go decisions 

– Enable design improvement 

– Assist with cost reduction 
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Source: http://prognostics.nasa.gov 
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What is BMS? 

• BMS - Battery Monitoring System 

• Battery Health Monitoring 
– Keep a continuous track of battery health 

• May not need internal battery information but needs continuous monitoring 

of key variables 

• Use information to Make decisions for a system that depends on battery 

power – i.e. based on what a system can or cannot do 

• Battery Health Management 

– Make decisions to optimize battery usage to extend battery life 

• Decisions at the system level – choose to alter system operational profile to 

selectively reduce load on aging batteries 

• Decisions at the battery level – make internal adjustments to a battery to let 

alone an aging cell or pack 

– May impose design changes to way batteries are wired internally 
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Motivation 

(AFRL, Artist's depiction)  

• 30 kW Ammonia Arcjet Launched onboard 

the ARGOS satellite on 23rd Feb, 1999 from 

Vandenberg AFB, CA 

• Rising battery temp.& press. due to gases 

released from electrolyte decomposition 

resulted in a breach of the battery case, 

releasing superheated gas into the flight unit 

(Courtesy: AFRL-PR-ED-TR-2001-0027)  

Mars Global Surveyor 

The MGS stopped operating shortly 

after celebrating its 10th anniversary 

(Nov, 2006) 

"We think that the failure was due to 

a software load  ... we drove the 

[solar] arrays against a hard stop 

and the spacecraft went into safe 

mode. The radiator for the battery 

pointed at the sun, the temperature 

went up, and battery failed. But 

this should be treated as 

preliminary.” 

John McNamee                          

Mars Exploration Program, NASA 

(NASA/JPL, Artist's concept)  

Electric Propulsion Space Experiment (AFRL) 

Beech A200 (Reg # N258AG) 

• Plane crashed during landing on April 08, 

2000 in Seattle, WA 

• Pilot failed to return engine ignition/start 

switches from ON to OFF after starting 

• Onboard generators failed to activate as the 

starter was engaged 

• Battery completely discharged resulting in 

total electrical failure during flight with 

associated disabling of normal landing gear 

extension capability 

(Courtesy: NTSB, ID #SEA00LA066)  
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Applications for Li++ Battery Prognostics 

• Prediction of end-of-charge and end-of-life based 
on current state estimation and estimated future 
usage to answer 

– Can the current mission be completed? 

• Given the health of the battery, is there enough 
charge left for anticipated load profile (within allowable 
uncertainty bounds)? 

• Dominant metrics: state of charge (SOC), state of 
health (SOH) 

– Can future missions be completed? 

• Given the health of the battery, at what point can 
typical future missions not be met? 

• Dominant metrics: end of life (EOL) or remaining 
useful life (RUL), state of health (SOH) 

– Current target applications include both Aeronautics 
and Space systems: 

• Hybrid electric UAVs (Edge 540) 

• Extra Vehicular Activity (EVA) battery for  astronaut 
suits  

• UGVs (K11 Rover) 

 

Secondary 
Oxygen pack

Caution and 
Warning 

Computer

Battery
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Other Applications of BMS 

• The future of transport 

– Hybrid vehicles are the face of environment friendly transportation now 

 

 

 

 

 

 

 

• Facilitating renewable energies 

– Renewable energy sources (like solar, wind, etc.) are not continually available  

– An energy storage facility coupled with these sources would make solutions more 

economically viable 

 

 

 

 

 

• Inefficiencies and wastage 

– Americans purchase nearly 3 billion batteries every year 

– In Operation Iraqi Freedom, the Marines used 3,028 batteries per day 

– A rechargeable battery can replace hundreds of single-use batteries over its life 
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PROGNOSTICS 
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Problem Formulation 

• Prognostics goal 

– Compute EOL = time point at which component no longer meets specified 

performance criteria 

– Compute RUL = time remaining until EOL 

• System model 

 

 

 

• Define threshold                            from performance specs that is 1 when 

system is considered failed, 0 otherwise 

• EOL and RUL defined as 

12/19/2012 14 

Compute                            and/or 

State Input Process Noise 

Output Sensor Noise 

Parameters 
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Defining EOL 

• Failure threshold TEOL defined 

with functional specifications and 

linked to boundary in multi-

dimensional damage space 

– Beyond the boundary, the 

system does not conform to 

functional specifications (or 

operational risk is too great) 

– Within the boundary, the 

system is still functioning 

properly 

• From time t0 to prediction time tP, 

system behaves within specs 

• Interested at what time t system 

will exit this region 
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Source: Matthew Daigle, Abhinav Saxena, Kai Goebel, “An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation”, Annual 

Conference of the PHM Society 2012, Minneapolis MN 
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 Prediction Uncertainty 

• System takes some path out of many possible paths 

until EOL 

– System evolution is a random process, so EOL and RUL are 

random variables 

– Random due to process noise and uncertain future inputs 

– This uncertainty is inherent to the system 

• Goal of prognostics algorithm is to predict true 

distribution of EOL/RUL 

– A misrepresentation of true uncertainty could be disastrous 

when used for decision-making 

• Prognostics algorithm itself adds additional 

uncertainty 

– For estimation: system state not known exactly, model not 

known exactly, sensor noise, initial state not known exactly 

– For prediction: model not known exactly, process noise 

representation not known exactly, future input distribution not 

known exactly 

– So typically, predicted EOL/RUL distribution wider than true 
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Inputs for Battery Prognostics 

• Real-time models of battery behavior 

– Model of battery discharge 

– Models of battery degradation 

– Models of battery faults 

• Access to C, V, & T measurement data 

• Characterization of uncertainties 

• A prediction algorithm 

12/19/2012 17 
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BATTERY MODELING 

Prognostics 
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Li-ion Battery Modeling for Prognostics 

• Intent 

– Develop low to medium fidelity cell level models 

• Nominal degradation models 

– SOC and SOV models 

– SOL models with effects of rest periods 

• Fault models 

– Model faster capacity degradation due to internal faults 

– Characterize fault effects from EIS measurement data 

– Extend models to battery level 

• Hardware simulation testbed to collect measurements from a variety of cell 

configurations 

• Model effects of temperature and usage history 
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Modeling Approaches 
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ARC Battery Health Modeling Overview 

SoC SoL Quantifies Remaining 

Charge in a Discharge cycle 

Quantifies Battery 

Capacity Decay 

Charge Depletion Faults Capacity Decay Faults 
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Battery Model Example 1 
• Developed dynamic battery models for end-of-discharge prediction 

• Used electrical circuit equivalent and explored various levels of granularity 
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Battery Modeling Example 1 

• State of charge 

 

• CP resistance 

 

• Voltages 

 

 

• Currents and Charges 
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Circuit Model with Single RC Branch  
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-----  Measured 

-----  Predicted 

Battery Voltage 

Battery Current 
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PREDICTION 
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End of Discharge (EOD) Prediction 

• Select discharge model 

• Identify discharge model parameters and learn parameters from 

testbed data 

• Initialize the Bayesian Framework with identified model to track 

discharge realtime and fine tune model parameters 

• Characterize uncertainties and estimate future loads 

• Use the refined model to predict end of charge 

 

 

Bayesian Frameworks utilized for prediction 

– Particle Filters 

– Kalman Filter and variants – EKF, UKF, etc. 
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Prognostics Validation 
• Prognostics Lab Li-ion battery 

Demo 

• Predictions start early on as 
model parameters get tuned 

• Predictions update on a 
regular basis as more 
information becomes available 

• Predictions are represented 
as a pdf of expected End-of-
Life (failure) time 

• Underlying physics based 
model is predict the non-linear 
behavior  

• Once tested on lab testbed, 
algorithms are tested onboard 
a UAV flight for validation 
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Results: EOD Prediction  
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Experimental Results: Known Inputs 

• Input is the current drawn from the 

battery 

• First, assume future inputs are known 

• Here, process noise included to 

account for model uncertainty 

12/19/2012 30 

Model is accurate, so 

predictions are accurate 

Predictions get out of 

accuracy cone towards EOL 

Accounting for process 

noise, capture 

uncertainty near EOL 

Simulate multiple process 

noise trajectories 

Source: Matthew Daigle, Abhinav Saxena, Kai Goebel, “An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation”, Annual 

Conference of the PHM Society 2012, Minneapolis MN 
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Experimental Results: Unknown Inputs 

• Assume future inputs are unknown 

• Assume constant discharge drawn from uniform distribution from 1 to 4 A 

• Sample randomly from this distribution at each prediction point 

              10 samples                                    100 samples 
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Input uncertainty >> model 

uncertainty 

Source: Matthew Daigle, Abhinav Saxena, Kai Goebel, “An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation”, Annual 

Conference of the PHM Society 2012, Minneapolis MN 
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Modeling SOL 

• A simple model based on 

– Coulombic efficiency 

• Ratio of prior charge capacity available 

during discharge 

• Coulombic efficiency determines how 

capacity decays in the next cycle 

– Rest periods help regain some charge 

• An exponential model for recharge 

during rest periods 

• Estimate parameters βj using PF 
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Source: Saha, B., Goebel, K., ‘Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework’, Annual Conference of the 

PHM Society (PHM09), 2009, San Diego CA 
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Frequency Domain Data Models 
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RVM Regression Filtering 

GPR Regression 

Sources:  

Goebel, K., Saha, B., Saxena, A., Celaya, J. R. , Christopherson, J. P., "Prognostics in Battery Health Management", IEEE Instrumentation and Measurement 

Magazine, Vol. 11(4), pp. 33-40, August 2008. 

Saha, B., and Goebel, K., “Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques”, Proceedings of the IEEE 

Aerospace Conference, BigSky MT, 2008. 
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EXPERIMENTS 

Aging 
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Current Battery Testbed 
• Four cells are cycled simultaneously  

– charge and discharge under different load and 

environmental conditions set by the electronic 

load and environmental chamber respectively  

• Periodically EIS measurements  

– to monitor the internal condition of the battery 

• DAQ system collects externally 

observable parameters from the sensors 

– C, V, and T data 

• Switching circuitry  

– enables cells to be in the charge, discharge or 

EIS health monitoring state as dictated by the 

aging regime 

 

EIS: Electro-chemical Impedance Spectroscopy 

Predict 

• End of charge  

• End of life 

 

Processes 

• Charge  

• Discharge 

• Recovery from rest 
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Current Testbed at ARC 
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New Testbed 

• Improved throughput and capability 

– 32 Channels 

• 5A, 10 V 

– 3 Channels  

• 50A, 100V 

– Automated EIS measurements 

• 1mHz – 30KHz 

– Automated thermal profiling 

• Battery Simulator 

– To simulate a pack with different  

cell configurations 
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Data Format 

Cycle 

Charge/Discharge 

Profile Date Time 
Ambient 

temperature 
Data 

V, A, T (@ 
batteries) 

V, A (@ 
charger/load) 

time 

Impedance 

Parameters Date Time 
Ambient 

temperature 
Data 

IB 

IS 

IB/IS 

ZB 
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Datasets publically available at http://ti.arc.nasa.gov/project/prognostic-data-repository   

(>7,000 downloads till date) 

http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository
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Discharge Cycle Data 
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Run-to-Failure Data 
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Battery Test Matrix 

  4 deg C 24 deg C 44 deg C 24 & 44 deg C 

Fixed 1A 45, 46, 47, 48 57,58,59,60     

Fixed 2A 
49, 50, 51, 52, 53, 

54, 55, 56 5, 6, 7, 18, 36     

Fixed 4A  70,71 
21, 22, 23, 33, 

34,72,73 29, 30, 31, 32   

Fixed 4A, 2A, 1A 41, 42, 43, 44     38, 39, 40 

Variable 0A and 4A   25, 26, 27, 28     

Variable 1A, 2A, 4A         

Experiments Test Matrix 
• Characterize  

– Effects of load 

– Effects of temperature 

– Combined effects 

– Effects of transients during load switching 
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Fixed 1A discharge, 1.5A charge at 24deg C    Batteries: 57, 58, 59, 60  
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Observations 

Batteries all start at 

about 1.8Ah and are 

degraded to various 

degrees over about 

280 Cycles 

Results look very 

consistent 
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Fixed 2A discharge, 1.5A charge at 24deg C    Batteries: 5, 6, 7, 18  

Observations 

Batteries all start at 

about 1.8Ah and 

2Ah  

The results look 

fairly consistent and 

show EOL at about 

500 cycles 
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Fixed 2A discharge, 1.5A charge at 4deg C    Batteries: 49, 53, 55, 56  

Observations 

Batteries all start at 

about 1.4Ah and 

show little 

degradation over 60 

- 250 Cycles 

Results look 

consistent although 

cycle times are 

varied and some 

battery results were 

thrown out  

Double dip behavior 

in some cycles 
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Cycles at 1A, 2A, 4A discharge, 1.5A charge at 4deg C     

Batteries: 41,42,43,44  

Observations 

Batteries are initially started at room temperature 

and 2A discharge 

Then the batteries are cycled at 4A and 1A 

One of the batteries shows the double dip / triple dip 

behavior 
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FAULT INJECTION EXPERIMENTS 

Preliminary Observations 
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• Most failures in Li-ion batteries are caused by Li-plating on the electrodes 

– There are several root causes and associated mechanisms that lead to Li-plating 

– All causes ultimately lead to Li-plating, followed by internal shorts due to dendrite formation, 

and finally resulting in thermal runaway 

• There are several methods to induce Li-plating to inject internal faults 

– Overcharge – can be very dangerous and generally not recommended without appropriate 

safety arrangements 

• This was tried and significant fade in capacity was observed but experiments halted due to dangerous 

conditions 

• Cells were stored for detailed EIS measurements to confirm the damage 

– Deep discharge – less dangerous but requires to find a very delicate balance between not 

stressing the cell enough and damaging the cell instantly 

• This was tried but with limited success as the conditions used were perhaps not stressful enough to 

visibly show extra degradation 

• Experiments took very long time, had to discontinue when the decision to switch back to 18650 cells 

was made 

– High temperature high C-rate charging/discharging – this is relatively dangerous if not 

controlled properly and can lead to thermal runaway 

• No recommended due to safety concerns 

• High temperatures case some irreversible chemical reactions that can lead to volatile gas emissions 

causing explosions [6] 

• We may try some once thermal chamber becomes available and integrated with our testbed 

 

 

Fault Injection Plan and Rationale 
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– Low temperature high C-rate charging/discharging – relatively safe and effective  

• Haven't been able to try yet as our test stand is currently not capable of high C-rate charging and that 

is where the most damage is expected 

• A study on role of operational temperatures on battery performance showed that low temperature 

charging  resulted in Li-plating and a faster capacity decay. This capacity decay was further worsened  

with higher C-rates [1,5]. 

• Another study confirmed that high discharge rates resulted in higher capacity fades . Capacity fade of 

1% took 450cycles at 1C, <50 cycles at 10C, <5cycles at 20C and <1 cycle  at 27C. They also show 

that low temperatures further make the matter worse. [2,8] 

• Several cell types were tested and it was found that in general low temperature and high C-rate 

discharges result in faster capacity fades due to Li-plating. However, depending on the cell chemistry 

and design (e.g. high cathode to anode capacity) degree of Li-Plating varies [3] 

• Other references show that  cycling at high temperatures reduces the battery life faster. At the same 

time charging at low temperatures can be damaging through Li-Plating [4, 6-8] 

• With the ongoing upgrades we may be able to carry out such experiments soon 
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Ongoing and Future Work 

• Develop enhanced models at all granularities 

• Include effects of temperature 

• Automated reconfiguration and re-planning methods for 

effective BHM 

• Battery level extensions 

• Fault mode study and modeling 

12/19/2012 49 



P R O G NOS TICS  C E N TE R  O F  E X C E L L E N C E  

THANK YOU !! 

Contact:  

abhinav.saxena@nasa.gov  

http://prognostics.nasa.gov  
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